Adaptive-Focus Statistical Shape Model for Segmentation of 3D MR Structures

نویسندگان

  • Dinggang Shen
  • Christos Davatzikos
چکیده

This paper presents a deformable model for automatically segmenting objects from volumetric MR images and obtaining point correspondences, using geometric and statistical information in a hierarchical scheme. Geometric information is embedded into the model via an affine-invariant attribute vector, which characterizes the geometric structure around each model point from a local to a global level. Accordingly, the model deforms seeking boundary points with similar attribute vectors. This is in contrast to most deformable surface models, which adapt to nearby edges without considering the geometric structure. The proposed model is adaptive in that it initially focuses on the most reliable structures of interest, and subsequently switches focus to other structures as those become closer to their respective targets and therefore more reliable. The proposed techniques have been used to segment boundaries of the ventricles, the caudate nucleus, and the lenticular nucleus from volumetric MR images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV

In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...

متن کامل

MAP–Based Framework for Segmentation of MR Brain Images Based on Visual Appearance and Prior Shape

We propose a new MAP-based technique for the unsupervised segmentation of different brain structures (white matter, gray matter, etc.) from T1-weighted MR brain images. In this paper, we follow a procedure like most conventional approaches, in which T1-weighted MR brain images and desired maps of regions (white matter, gray matter, etc.) are modeled by a joint Markov-Gibbs Random Field model (M...

متن کامل

Semi-automatic segmentation of vertebral bodies in volumetric MR images using a statistical shape+pose model

Segmentation of vertebral structures in magnetic resonance (MR) images is challenging because of poor contrast between bone surfaces and surrounding soft tissue. This paper describes a semi-automatic method for segmenting vertebral bodies in multi-slice MR images. In order to achieve a fast and reliable segmentation, the method takes advantage of the correlation between shape and pose of differ...

متن کامل

Statistical Medial Model for Cardiac Segmentation and Morphometry

In biomedical image analysis, shape information can be utilized for many purposes. For example, irregular shape features can help identify diseases; shape features can help match different instances of anatomical structures for statistical comparison; and prior knowledge of the mean and possible variation of an anatomical structure's shape can help segment a new example of this structure in noi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000